VIRTUALIZATION
UltraCore CTL
This project delivers a full-stack system for deploying, managing, and monitoring high-performance VMs with AI workloads. It includes:
ultracorectl: CLI for VM orchestration.
Backend: FastAPI API to control virtual environments, GPU passthrough, WASM VM runners.
Frontend: React + Tailwind dashboard for live control and insights.
Metrics: Prometheus + Grafana integration for detailed monitoring.
Smart Scaling: Just-in-Time auto-scaling for AI-heavy virtual machines.
Templates: Preloaded Ollama and WASM-optimized VM configurations.
Secure Boot: UEFI-secure VM launch with signed kernels.
Remote LLM Control: Trigger and manage LLM workloads from UI or
ultracorectl
.Encrypted Templates: All template files hosted with AES256 encryption and GPG validation.
Prebuilt Images: Optional ready-to-deploy bundles for rapid setup.
Directory Structure
ultracore/
├── ultracorectl/ # CLI tool
├── ui/
│ ├── backend/ # FastAPI server
│ └── frontend/ # React dashboard (Live Stats, Logs, Control)
├── monitor/ # Prometheus & Grafana configs
├── templates/ # Predefined AI/VM templates (Ollama, WASM, etc.)
├── charts/ # Helm chart for Kubernetes deployment
└── diagrams/ # Architecture visualizations
ultracorectl (CLI)
Supports commands like:
ultracorectl create-vm --cpu 8 --ram 32G --gpu passthrough --ai ollama
ultracorectl start vm1
ultracorectl attach-container vm1 container123
ultracorectl stats vm1
ultracorectl scale vm1 --jit
create-vm
: Launch with GPU passthrough and AI workloadsattach-container
: Embed containers inside VMs (unfolded virtualization)stats
: Real-time telemetry output via CLIscale
: JIT-scaling control for resources
Backend (FastAPI)
Supports API routes:
POST /vm/create
POST /vm/start
POST /vm/attach-container
GET /vm/stats
POST /vm/scale
Key Enhancements:
GPU Passthrough: Leverages libvirt + vfio
WASM VM Runners: Supports WASMEdge, Wasmtime with low-latency VM integration
Kubernetes Bridge: Exposes VM networking for K8s pod injection
JIT Auto-scaling: Dynamically expands compute based on load
Template Loader: Ollama and WASM environments provisioned on command
Secure Boot: Verified boot chains with OVMF + signed kernel support
Remote LLM Control: Secure WebSocket API for LLM inference triggers
Encrypted Template Hosting: Downloads and decrypts templates using per-session GPG keys
Frontend (React + Tailwind)
Live dashboard with:
VM controls (Start, Stop, Restart, Create)
Real-time graphs (CPU, RAM, GPU, Disk I/O)
Container to VM controls
WASM/AI workload deployment from UI
Grafana metrics iframe embed for live insights
Template Launch Panel (Ollama, WASM, etc.)
Secure Boot config and LLM activation switches
Encrypted template download UI
Components:
DashboardCard
- Visual overviewVMControls
- Start/Stop/etc.LiveStatsPanel
- Graphs via Chart.jsContainerAttachForm
TemplateLoader
SecureBootToggle
RemoteLLMTrigger
Embedded Grafana Dashboard
Prometheus scrapes all node, VM, and container metrics. Grafana dashboard config located at:
monitor/grafana/provisioning/dashboards/ultracore_dashboard.json
Load this in Grafana to get:
VM CPU/GPU/memory usage
WASM runtime performance
Container-to-VM bridge stats
Auto-scaler JIT triggers and history
Preloaded Templates
Templates are stored in JSON under templates/
:
ollama-ai.json
{
"name": "ollama-ai",
"cpu": 8,
"ram": "32G",
"gpu": true,
"packages": ["ollama", "cuda", "torch"],
"ai_loader": "ollama"
}
wasm-optimized.json
{
"name": "wasm-optimized",
"cpu": 4,
"ram": "8G",
"wasm_runner": "wasmtime",
"network": "bridge"
}
Kubernetes Helm Chart
To deploy entire stack in a cluster:
cd charts && helm install ultracore ./
Chart includes:
Backend (FastAPI) + service
Frontend (React) + ingress
VM pods w/ GPU passthrough (via kubevirt)
Prometheus + Grafana + scrape configs
PVCs for VM persistence and templates
Architecture Diagram
+-----------------------+
| UltraCore UI (React) |
+-----------------------+
|
↓
+--------------------------+
| FastAPI Backend API |
+--------------------------+
/ | | | \
↓ ↓ ↓ ↓ ↓
[Libvirt][Docker][WASM][K8s][Prometheus]
| |
+----------------+ +------------------+
| QEMU VMs | | Containers |
| (GPU, JIT AI) | | Inside VMs |
+----------------+ +------------------+
|
[Grafana UI]
Scripts
Run it all:
# Start backend
cd ui/backend && uvicorn main:app --reload
# Start frontend
cd ui/frontend && npm install && npm run dev
# Start monitoring
cd monitor && docker-compose up -d
# Use CLI
./ultracorectl create-vm --cpu 8 --ram 32G --gpu passthrough --ai ollama
Build Prebaked Image
To generate a complete prebuilt VM image:
./ultracorectl build-image --template ollama-ai --output ultracore-ollama.img
Includes:
UltraCore backend + frontend
Prometheus/Grafana stack
Ollama preinstalled and GPU ready
WASM runner provisioned
Secure Boot signed kernel
GPG-secured template image with encrypted metadata
Remote LLM socket interface (via
/api/llm/trigger
)Ready for immediate deployment on any KVM host
Last updated